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Finding a vaccine that can last a long time and effective against viruses with high

mutation rates such as SARS-CoV-2 is still a challenge today. The various

vaccines that have been available have decreased in effectiveness and require

booster administration. As the professional antigen presenting cell, Dendritic

Cells can also activate the immune system, especially T cells. This ability makes

dendritic cells have been developed as vaccines for some types of diseases. In

SARS-CoV-2 infection, T cells play a vital role in eliminating the virus, and their

presence can be detected in the long term. Hence, this condition shows that

the formation of T cell immunity is essential to prevent and control the course

of the disease. The construction of vaccines oriented to induce strong T cells

response can be formed by utilizing dendritic cells. In this article, we discuss

and illustrate the role of dendritic cells and T cells in the pathogenesis of SARS-

CoV-2 infection and summarizing the crucial role of dendritic cells in the

formation of T cell immunity. We arrange the basis concept of developing

dendritic cells for SARS-CoV-2 vaccines. A dendritic cell-based vaccine for

SARS-CoV-2 has the potential to be an effective vaccine that solves

existing problems.
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Introduction

COVID-19, which WHO declared a pandemic in March 2020, remains the focus of

world problems (1). The infection is caused by the SARS-CoV-2 virus, a positive-strain

RNA virus that belongs to the beta coronavirus family (2). SARS-CoV-2 conveys a

genome resemblance to the MERS-CoV and SARS-CoV viruses (3). SARS-Cov-2

continues to mutate, giving rise to various variants of this virus. Some emerging

variants classified as Variance of Concern (VoC) include the alpha, beta, delta, and

omicron variants (4).
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The SARS-CoV-2 infection manifests into various organ

system abnormalities such as the respiration, cardiovascular,

nervous, and digestive systems with a broad spectrum of

symptoms ranging from mild to severe (5). In SARS-CoV-2

infection, various pathology findings were documented, such as

a decrease in the number of lymphocytes to an increase in

inflammatory cytokines production that led to cytokine storm in

severe symptomatic patients (6). These findings indicate the

failure of human immune response in SARS-CoV-2 infection.

The immune system failure is attributed to the ability of SARS-

CoV-2 to evade the human immune response. Specifically, T cell

dysfunction was found in SARS-CoV-2 infection, which is

essential in eliminating SARS-CoV-2 in the body (7).

To date, various types of vaccines have been developed and

approved to prevent SARS-CoV-2 infection. All of these vaccines

are oriented to produce antibodies that can neutralize SARS-

CoV-2. However, studies show that there is a decline in

antibodies several months after vaccination and also a decrease

in the effectiveness of existing vaccines against the evolving

variants of SARS-CoV-2 (8). This has implications for the need

of the novel effective vaccine development to protect against the

emergence of SARS-CoV-2 variants. Meanwhile, it has been

known that memory T cells are capable of lasting longer than the

antibodies formed and have the capability to recognize the

SARS-CoV-2 variants (9). Therefore, the development of a T

cell-oriented vaccine is a promising approach for the generation

of effective and long-lasting immunity against SARS-CoV-2.

Dendritic cells (DC) have a pivotal role in the immune

system, which connects the activation of the innate and adaptive

immune systems. In addition, DC is well-known for its ability to

activate and differentiate naïve T cells (10). DC has been

developed as an immunotherapy or vaccine for cancer and

infections (11). DC’s ability to activate the immune system,

the successful development of DC-based immunotherapy in

other diseases, and also considering the role of DC in the

COVID-19 can be the cornerstone for the development of

DC-based vaccine for SARS-CoV-2. Therefore, this article

discuss the potential development of DC as a SARS-CoV-2

vaccine by focusing on the role of T cells and DC in SARS-

CoV-2 infection, the formation of immunity in SARS-CoV-2

infection, and the role of DC in shaping immunity which is the

foundation for the development of DC as a SARS-CoV-

2 vaccine.

Immune system dysfunction in
SARS-CoV-2 infection

Viruses that invade the body first will activate an innate

immune response that aims to eliminate the virus and then

trigger an adaptive immune response. RNA Viruses such as

SARS-CoV-2 have Pathogens Associated Molecular Patterns

(PAMPs) that can be recognized and bonded to Patterns

Recognition Receptors (PRR) in the cytosol and endosomal

phagocytic cell (12). This process leads to polynuclear

lymphocyte cells, monocytes, Natural Killer (NK) cells along

with DC recruitment (13). Recruitment of these cells is a crucial

process that intends to eliminate the virus and stop the disease

progression. Antigen Presenting Cell (APC) captures incoming

viral particles to be introduced to naïve T cells (14). Naïve T cells

then differentiate into specific CD4+ and CD8+ T cells (15).

There are two kinds of CD8+ T cells: effector T cells or cytotoxic

T cells (Tc) and memory cells. These formed Tc cells are

responsible for eliminating the virus. CD4+ T cells or T helper

(Th) assist the role of Tc and contribute to the formation of the

humoral immune system by differentiating B cells into B cell-

producing specific antibodies (16).

There are several immunopathologies found in COVID-19.

Studies revealed the presence of lymphopenia and increased

activation of T cells, which are the characteristics of lymphocyte

dysfunction, abnormalities in monocytes and granulocytes,

increased cytokines production, and the generation of specific

antibodies, especially in patients with severe symptoms (17, 18).

All these hallmarks correlate to severity degree and survival rate

(19). These conditions also indicate the presence of both innate

and adaptive immune dysfunctions by which the SARS-CoV-2

capability to evade the immune responses (20).

The invading SARS-CoV-2 will be identified by Retinoid-

acid Inducible Gene-1 (RIG-1), Melanoma-Differentiation

Associated protein 5 (MDA-5), Toll-like Receptor 7 (TLR-7),

and TLR-4 which specifically recognize S SARS-CoV-2

glycoprotein (21). The process activates the transcription of

Nuclear Factor kappa-B (NF-kB), Interferon Regulatory Factor

3 (IRF-3), and IRF-7 (22). Under normal circumstances, the

invading virus initiates the provision of type I interferon (IFN-I),

IFN-III, pro-inflammatory cytokines, in conjunction with

chemokines (6). At the early phase of the disease, IFN-I plays

a critical role in eliminating and inhibiting viral replication and

assisting in activating adaptive immune responses (23).

However, delays in the provision and activity of IFN-I will

trigger the progressivity of SARS-CoV-2 infection (24). In

SARS-CoV-2 infection, there was a suppression and delay in

the IFN-I provision (25). It is caused by inhibition of signaling

pathways by Open Reading Frame 3b (ORF3b), ORF4a, ORF4b,

ORF5, ORF6, Non-specific protein 1 (Nsp1), Nsp2, Nsp14, M,

and N SARS-CoV-2 (21). The suppression of IFN-I is a

mechanism by which SARS-CoV-2 avoids the immune system

that leads to unrestrainable viral replication and disease

progressivity (26).

Failure to eliminate SARS-CoV-2 leads to an increase in

activation of Nod-like Receptor Family Pyrin Domain

Containing 3 (NLRP3) inflammasome (27). This condition

contributes to severe inflammatory reactions and severe

progressivity of the disease. In COVID-19, NLRP3 activation

involves the appearance of programmatic cell death through the
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production of interleukin 1b (IL-1b) and IL-18, which induces

leucopenia (28). NLRP3 activation also increases macrophage

activation, thus, increasing the production of IL-1RA, IL-6, IL-8,

IL-10, Tumor Necrosis Factor-Alpha (TNF-a), and chemokine

C-X-C ligand 10 (CXCL-10) (29). This process is one of the

factions of the occurrence of cytokine storms in COVID-19

patients (see Figure 1) (30).

Cellular adaptive immune responses play an important role

in the pathogenesis of COVID-19, which involves SARS-CoV-2-

specific CD4+ and CD8+ T cell activity (31). T cells will respond

to SARS-CoV-2 through the recognition of the SARS-CoV-2

epitope presented by MHC (32). The main targets of T cells are

the M, N, S, and other various epitope proteins expressed by

ORF3, ORF8, Nsp2, and Nsp4 SARS-CoV-2 (33) .

Approximately, there are 1.400 SARS-CoV-2 epitopes

recognizable by T cells (34). Studies have shown that most

epitopes are retained in various variants of SARS-CoV-2 (35).

Earlier induction of CD8+ T cell was found in the patients

with mild symptoms (36). This demonstrates the critical role of

CD8+ T cells in eliminating the SARS-CoV-2. In the severe

patients, there was an escalation in T cells activation, especially

CD8+ T, which was characterized by an increase in the

expression of several activation markers (CD38, Human

Leukocyte Antigen-DR isotype/HLA-DR, Ki-67) and cytotoxic

proteins (perforin and granzyme B) (37). T cells activation leads

to the T cells fatigue. This condition is characterized by increased

inhibitor receptors expression such as Lymphocyte Activation

Gene 3 (LAG-3), T-cell Immunoglobulin and Mucin Domain-

Containing Protein 3 (TIM-3), and also Programmed Cell Death

Protein-1 (PD-1) (37, 38). The fatigue T cells will have a

reduction in their cytotoxic ability thus, they are ineffective in

eliminating the virus.

There were CD4+ and CD8+ T cell numbers declining

peculiarly in severe patients, indicating the presence of T cell

dysfunction in COVID-19 infection (39). Several mechanisms

have been thought to cause the decrease in the T cell counts.

First, it is caused by viral infection directly through the ACE

receptors owned by T cells (35). Second, it is caused by the

suppression of the infected lymphoid organs so that there is a

decrease in lymphocyte production (40). Third, it is caused by

the process of T cell apoptosis mediated by the bond of Fas and

Fas Ligand (FasL). In COVID-19, Fas expression on the surface

of T cells and plasma FasL production was found to increase

(41). Fourth, the presence of T cell pyroptotic induced by the

upregulation of NLRP-3 (29). Fifth, direct cytopathic effects on T

cells by IL-6 and TNF-a (42). Sixth, T cell apoptosis mediated by

infected DC, characterized by an increase in Tumor Necrosis

Factor-related Apoptotic Inducing Ligand (TRAIL) in the

DC (43).

SARS-CoV-2 has been shown to have the ability to infect

DC, causing a decrease in the DC’s number and DC’s function

impairment. SARS-CoV-2 infection can reduce the number of

mononuclear DC (moDC) by 10-20% (44). Studies in COVID-

19 patients in acute and convalescent-phase showed a decrease

in the conventional DC (cDC) and plasmacytoid (pDC) number

accompanied by an increase in the cDC/pDC ratio, especially in

patients with severe symptoms (45). There was also a pDC

decrease in pediatric patients who experienced Multisystem

FIGURE 1

SARS-CoV-2 can infect DC, including pDC, which is the primary producer of IFN-I. The SARS-CoV-2 infection causes a decrease in the number

of DC as well as a decrease in IFN-I production. Inadequate IFN-I leads to failed elimination of SARS-CoV-2. The failure eventually increased the

activity of NLRP-3, which leads to pro-inflammatory cytokines increase which then triggers cell apoptotic, cytokine storms, and depletion of T

cells. CXCL, the chemokine C-X-C motif ligand; DC, dendritic cell; IFN, interferon; IL, interleukin; NLRP-3, NLR family pyrin domain containing 3

inflammasome; pDC, plasmacytoid dendritic cell; TNF, tumor necrosis factor.
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Inflammatory Syndrome in Children (MIS-C) due to SARS-

CoV-2 infection (46). Depletion in cDC and pDC number

remained found until seven months post-infection (47).

SARS-CoV-2 infection also causes DC maturity impairment.

Examination of patient alveolus tissue showed an increase in DC

recruitment that did not have maturity molecules (48). Studies

showed a decrease in Human Leucocyte Antigen – DR isotype

(HLA-DR) and CD80 expressions, which are the markers of DC

maturity, and a reduction in STAT2 activity, which correlates

with correlates to the ability of DC to activate CD8+ T cells (43,

49, 50). The immature DC is unable to present antigens to T

cells, so the differentiation and production of specific T cells are

inadequate (51).

The decrease and dysfunction of DC caused by SARS-CoV-2

infection results in an IFN-I reduction. SARS-CoV-2 inhibits the

phosphorylation of STAT1 in moDC and pDC, which leads to

suppression and delaying the production of IFN-I (44). The

infected DC also produced pro-inflammatory cytokines (IL-6,

TNF-a) as well as chemokines (Interferon gamma-induced

Protein 10/IP-10, Macrophage Inflammatory Protein 1 alpha/

MIP-1a, Monocyte Chemoattractant Protein1/MCP-1 (see

Figure 1) (51). Thus, SARS-CoV-2 infection in DC has

responsible for immune system dysfunction.

Specific immunity against
SARS-CoV-2

Antibodies will be formed when SARS-CoV-2 infection

occurs. Immunoglobulin M (IgM) and IgG that are specific to

the N and S protein begin to be measured on day 2 of symptoms.

IgM peaks on day 11-13 then decrease after 3 weeks besides IgG

will be observed entirely on day 17-19 (52). The increase in IgG is

followed by the formation of memory B cells for up to 3 months in

length (53). Nevertheless, some patients with mild or

asymptomatic symptoms were not found to be any

seroconversion of these antibodies (54). Studies have also shown

a decrease in these antibodies in the 3-6 months (55). Tiandan

et al. found that the IgG ability to neutralize SARS-CoV-2 in 1-

year post-onset was only 43% subjects, and its antibody ability

would decrease against new variants of SARS-CoV-2 (56).

SARS-CoV-2 infection also forms a T-cell response (57). The

CD4+ T-cell response was detected in all patients, while CD8+ T

cells were found in most patients, not in all patients (33). CD8+

T-cells can be observed on day seven and peak until day 14

(58). T cell responses also remained to be found in mild

or asymptomatic patients, despite absent antibodies

seroconversion (54). The detected T cell response was

characterized by the formation of effector and memory T cells.

The formed memory T cells are capable of recognizing various

epitopes of SARS-CoV-2 (59). formation of specific memory T

cells forms immunity and prevention against reinfection. This

finding indicates the superiority of T cell immunity compared to

antibodies in preventing the infection.

The memory CD8+ T cells were found to be diverse, ranging

from central memory (Trm), effector memory (Tem), resident

memory (Trm), even into polyfunctional memory cells or

memory T cells that can act as stem cells (Tscm) (60). The

ability of memory CD8+ T cell formation is attributed to the

recognition and elimination ability of SARS-CoV-2 (61).

Transient T cell formation CD4+ memory is correlated with

the presence of B cells and the production of IgG (53). The

specific T cells remain observed for up to 6 months post-

infection (62). While polyfunctional T cells remain detected

for up to 10–12 months (60). This suggests that SARS-CoV-2

specific T cells can persist for an extended period. This condition

shows similarities to SARS-CoV infection in which specific

memory T cells remain detected for 17 years (63).

Currently, various vaccines have been developed and used to

strengthen immunity against SARS-CoV-2. There are several

types of vaccines in circulation, such as protein-based vaccines,

messenger ribonucleid acid (mRNA), viral vectors, and

inactivated viruses (8). All types of vaccines have the formation

of specific antibodies that can neutralize SARS-CoV-2 with

varying efficacy. mRNA-based vaccines show effectiveness above

90% (64, 65), virus vector-based vaccines 66-91% (66, 67),

inactivated virus-based vaccines can reach 80% (68), while

protein-based vaccines are currently still being developed (69).

However, research shows a decrease in the effectiveness of all these

vaccines against VoC by 0.5–11 times (8).

Role of dendritic cell in shaping
T cell immunity

DC is well-known as the most potent APC and plays a

pivotal role in innate and adaptive human immune systems (10).

In the innate immune system, DC introduces and determines the

body’s response to DAMP or PAMP. In the adaptive immune

system, DC is responsible for presenting antigens to naïve T cells

(70). DC exposed to the antigen will maturate and drain to the

lymphoid organs, then present the antigen to the naïve T cells

leading to T cell differentiation (71). Therefore, DC has a role in

connecting the innate and the adaptive immune system.

DC is derived from Lymphoid Primed Multi-Potent

Progenitor (LMPP) which differentiates into Granulocyte-

Macrophage DC progenitor (GMDP) and then becomes

macrophage DC progenitor (MDP). MDP will be a Common

DC Progenitor (CDP) that will differentiate into pDC, cDC1,

and cDC2 (72). In addition, there is DC derived frommonocytes

(moDC) and DC subset known as Langerhans cells (10). In

general, there are five types of DC. pDC, cDC1, and cDC2 are

DC found under any conditions, while Langerhans cells are

specified in the skin, while moDC is only produced when there is
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inflammation. DC can be found in the lymphoid organs,

circulation, and specific tissues or organs such as the lungs,

liver, and digestive tract (73).

The critical role of DC in the immune system is to perform

priming cell T (Figure 2). This process differentiates naive T cells

into antigens or pathogen-specific T cells (10). Memory T cells

will cause pathogen elimination to occur faster and prepare the

body for repeated pathogens exposure (74). DC presents

antigens to CD4+ through MHC-II molecules and CD8+ via

MHC-I (75). Activation of CD4+ T cells by DC will induce the

formation of plasma cells so that specific antibodies are formed

(Figure 2B). In addition to the ability to recognize external

antigens, DC can also recognize self-antigens in the body to

prevent the occurrence of autoimmune through priming T cell

becomes cell T regulator (Treg) (71). T cells priming process is

affected by the presence of antigen presentations, co-stimulating

molecules, and the presence of cytokine production (70).

Each type of DC has its function (Table 1). pDC can be

found in the circulation and lymphoid organs and plays a crucial

role in the body’s immune mechanism against viruses because it

has TLR that can recognize RNA and DNA (81). Besides as

primary producer of IFN-I (such as IFN-a), pDC also produces

IFN-III, TNF-a, IL-6, and granzyme B (72). CD4+ T cells can be

primed by pDC by CD-303 and CD-367 molecules, while CD8+

T cells are primed by pDC through antigen transfer to cDC and

the resulting IFN-I activity (76).

Conventional dendritic cells 1 (cDC1) are more prevalent in

tissues than blood (73). cDC1 activates effector CD8+ T cells and

NK cells through the C-X-C chemokine Ligand motif 9

(CXCL9), CXCL10, and XC 1 chemokine receptors (CXR1)

expression so that it can regulate cytotoxic cells (77). In

addition, cDC1 can also activate Trm through CD-24

expression and the production of IL-12 and IL-15 (70). These

cytokine productions can also activate Th1 cells (72). Studies

B

A

FIGURE 2

(A) Dendritic cell’s ability to differentiate naïve T cells. As APC, DC presents antigens to CD4+ and CD8+ T cells through MHC-II and MHC-I,

respectively. This process forms antigen-specified effector and memory T cells. (B) Dendritic cell also plays a vital role in the B cells activation.

Activation of B cells can be directly carried out by DC cells or by the intermediately by CD4+ T cells. Activated CD4+ T cells will migrate to the

follicular area to activate specific B cells of both plasma B cells that produce antibody and memory B cells. DC, dendritic cell; FDC, follicular

dendritic cell; IL, interleukin; MHC, major histocompatibility complex; TGF-b, transforming growth factor b.

Jonny et al. 10.3389/fimmu.2022.989685

Frontiers in Immunology frontiersin.org05

https://doi.org/10.3389/fimmu.2022.989685
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


show that cDC1 also plays a role in the activation of Tfh. In

addition, Th1 and Tfh produce cytokines IL-4, IL-21, and IFN-g

which activate B cells that are capable of producing antibodies

(16). Thus, cDC1 contributes to the formation of the humoral

immune system.

Conventional dendritic cell 2 (cDC2) is a DC that has a

broader cross-presentation capability to CD4+ and CD8+ T cells

compared to other DCs (82). This DC is the leading producer of

IL-1b, IL-6, IL-12, and IL-23 that makes DC as the most potent

activator of Th1, Th2, and Th17 (73). The produced IL-12 is

capable of regulating Transcription factor 1 (Tcf1) which is a

regulator for the differentiation of CD8+ into effector cells as

well as memory cells (78). Based on research, cDC2 is also an

efficient Tfh inducer, thus making these cells have an essential

role in antibody generation (16). In addition, cDC2 also plays a

role in Tregs differentiation through the IL-10 and Transforming

Growth Factor-b (TGF-b) production (72).

Monocyte derived dendritic cell (moDC) originate from

monocytes during infection and inflammation (73). In vitro,

moDC can be formed by administering Granulocyte-

Macrophage Colony-Stimulating Factor (GM-CSF) and IL-4

stimulation through the IRF-4 signaling pathway (75). Like

other types of DCs, moDC has the ability to prime T cells

through T-bet and Tcf1 regulation in line with the production of

cytokines IL-1, IL-23, and TNF-a (72, 79). moDC also produces

IL-15 causes memory CD8+ T cells last a long time (80). In

addition, moDC also secretes IL-12 which can activate T cells

that become Th1 cells (71).

Rationale of dendritic cell based
vaccine for SARS-CoV-2 infection

Dendritic cells have been widely developed and researched

as immunotherapy in managing various diseases. DC-based

immunotherapy has been tested on breast, prostate,

melanoma, kidney, glioblastoma, ovarian, and lung cancers

(83). Clinical trial studies of DC-based vaccines arrayed

promising results, with a marked rise in the count of anti-

tumor-specific CD8+ T cells (84). As an example, clinical trials

in patients with advanced ovarian cancer given autologous DC

vaccines pulsed with HOCl-oxidized tumor lysate (OC-DC)

showed an increase in T cell response and a lengthening of the

survival rate for two years to 100% accompanied by low side

effects (85).

DC-based immunotherapy was also developed for infectious

diseases. In HIV trials, DC-based vaccines increased specific T

cells response, although the effectiveness of reducing viral load

was still not conclusive (86). Clinical trials for hepatitis C also

showed an upsurge of specific cellular immunity to HCV in the

absence of severe side effects (87). Further, DC-based vaccines

were also developed for hepatitis B, malaria, as well as influenza

(11, 88, 89).

The success of DC-based cancer immunotherapy and

infection vaccines suggests the potential for DC development

as a SARS-CoV-2 vaccine. This approach utilizes the ability to

present antigens and induce the immune system possessed by

DC (90). Immature DCs can be introduced with SARS-CoV-2

antigens, for example, S protein which has proven to elicit an

immune response (91). This process can be developed both

in-vivo and ex-vivo, but the ex-vivo approach can be an option in

developing this vaccine because of its feasibility and shortening

of the processes that should occur in the body (92). The DCs that

have been exposed to the antigen will undergo maturation and

drain to the lymphoid organs, then present the antigen to the

naïve T cells so that specific immunity to SARS-CoV-2 is formed

(71). This approach is currently being developed in Indonesia

and commonly known as Nusantara Vaccine.

There are four main reasons that can support the utilization

of DC as a SARS-CoV-2 vaccine, including (Figure 3):

TABLE 1 Types of dendritic cells and their functions.

Dendritic Cell Types Function References

Plasmacytoid Dendritic Cell

(pDC)

Priming of CD8+ through IFN-I production and antigen transfer to cDC and priming CD4+ through regulation of

CD-303 and CD-367 molecules

(72, 76)

Conventional Dendritic Cell 1

(cDC1)

Regulate and prime CD8+ by IFN-III, CXCL 9/10, and IL-12 production (77)

Priming Trm by the production of CD-24, IL-12, IL-15 (70)

Differentiation Th1 and Tfh that induced of B cell (16, 72)

Conventional Dendritic Cell 2

(cDC2)

Potent activator of Th1, Th2, Th17 through IL-1b, IL-6, IL-12, dan IL-23 production (73)

Differentiates CD8+ and regulating Tcf1 (78)

The efficient inductor of Tfh (16)

Differentiates Treg through the production of IL-10 and TGF-b (72)

Monocyte derived Dendritic Cell

(moDC)

CD4+ and CD8+ T cells priming through regulation of Tbet, Tcf1 and by producing cytokines in inflammation

states.

(72, 79)

Differentiates long term memory T cells by producing IL-15 (80)

Langerhans Cell Specific immune responses in the skin (10)
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First, DC is a professional APC that captures, processes, and

exposes antigens efficiently and effectively to other immune cells

such as T cells (32). DC recognizes and internalizes antigens by

endocytosis or by direct contact with gap junction and by cross-

dressing (93). This method allows the DC to be able to identify and

capture antigens in other infected cells and those that have

experienced apoptotic. DC has a lower lysosome protease

enzyme and the ability to neutralize pH well to maintain the

antigens captured until the exposure process to other immune cells

(32). In addition, DC has Gamma Interferon-Induce Lysosomal

Thiolreductase (GILT), whose function is to maintain intracellular

processes in the DC so that pyroptotic does not occur due to

inflammasome activation (94). Thus, the use of DC as a vaccine

will ensure the process of introduction and presentation of SARS-

CoV-2 antigens so that specific immunity formation occurs.

Second, DC is a cell that SARS-CoV-2 weakens to evade the

body’s immune response thus, DC is a plausible vaccination

target (95). In the acute phase, the significant decrease of pDC

leads to IFN-I depletion thus, causes a failure of the innate

immune response (96). In addition, SARS-CoV-2 infection also

inhibits adaptive immune responses through impairing DC

maturation characterized by a decrease in Human Leucocyte

Antigen –DR isotype (HLA-DR) and CD80 expressions (49, 50).

In COVID-19 patients, it was found that the reduction of DC

was correlated with the depletion of T cell numbers (97).

Altogether, this condition leads to the failure to transition an

innate immune response into an adaptive immune response.

Therefore, vaccination with a focus on improving and protecting

DC function has the potential to provide better results.

Third, DC has a good ability for T cell activation. As

previously explained, DC will activate various types of T cells.

Naïve CD8+ T cells will be activated into effector and memory T

cells (76). Formed Th2 and Tfh cells play a role in the

differentiation of B cells into antibody-producing cells, while

Treg cells control the function of other lymphocytes (75).

Evidence that formed SARS-CoV-2-specific memory T cells

persist for an extended period implies this vaccine can prevent

infection and replication of SARS-CoV-2 in the long term (53,

60). In addition, studies have shown that memory T cells remain

effective against VoC thus, this DC-based vaccine has the

potential to persist effective against various mutated virus

variants (35). All of these things are also supported by studies

that show that T cells play an essential role in SARS-CoV-2

infection. Therefore, the ability of DC to activate T cells is the

basis of the use of DC for SARS-CoV-2 vaccines that potential to

have good effectiveness.

Fourth, the DC-based vaccine has the potential to trigger the

formation of germinal center (GC) cell responses so that B cells

are formed and can recognize virus variants. DC induces the

response of B GC cells through the activation of naïve T cells

into Tfh cells, which will then activate B cells (98, 99). The

activation process triggers the formation of plasma and memory

B cells that undergo affinity maturation and clonal evolution so

that a broad B cell response is formed to fight viruses with an

immense mutation rate such as SARS-CoV-2 (100). Through

this mechanism, antibodies that can neutralize SARS-CoV-2

widely will be generated so that they are effective against various

virus variants.

FIGURE 3

Four fundamental reasons for the development of DC as a SARS-CoV-2 vaccine. DC, dendritic cell; FDC, follicular dendritic cell; MHC, major

histocompatibility complex; TFH, T follicular helper.
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For these four reasons, DC can be used as a SARS CoV-2

vaccine. The immunity generated through this approach is

oriented towards forming T cells so that the vaccine can last a

long time and remain effective against the developing variants of

SARS-CoV-2. DC-based vaccines also have the potential to

create antibodies that have a broad response. The integration

in producing specific T cells and antibodies is the main key to

developing DC as a potential SARS-CoV-2 vaccine. For this

reason, further studies need to be executed to prove the safety

and effectiveness of DC-based vaccines.

Translation of DC-based vaccine for
SARS-CoV-2: Challenges and future
perspective

DC-based vaccine translation depends on various factors,

DC type selection and processing, antigen loading selection, and

administration methods of DC-based vaccines (101). As already

mentioned above, there are various subtypes of DC present in

the human body. pDC is often associated and fights an

important immunity protection to viral infections (96). cDC

that is able to activate T cells widely so that it is postulated is able

to activate CD4+ which plays a role in the formation of

antibodies (77). However, the utilization of both subsets

requires a more invasive procedure, and its proportion in the

body <1% in the blood becomes an obstacle in its utilization

(102). moDC is a DC subtype that is widely chosen because it is

easily accessible from peripheral blood which is then incubated

with GM-CSF and IL-4 (103). Vaccines using moDC in cancer

have been shown to be able to form T cell immunity. However,

some studies have shown the potential for moDC inferiority in

priming T cells compared to cDC and pDC (104). However,

some studies have also shown that the ability of antigen transfer

or cross-presentation that moDC then introduce antigens to

endogenous cDC in the body so that it is able to produce

cytokines (IL-12) that are able to priming CD4 cells (105). As

well as a study also showed the cancer DC vaccine that the

activation ability of CD8+ is also spaced by endogenous DC

interacting with the DC vaccine (106). Thus moDC is potential

candidate in the development of a vaccine for SARS-CoV-2.

Selection of loaded-proteins or antigens is also critical issue

since the protein is determinator of a specific immune response. In

this case, the selection of specific proteins capable of triggering a

strong immune response to SARS-CoV-2 must be determined

properly because it is related to its effectiveness even against virus

variants that continue to develop. Currently the S-protein is widely

used as a target in vaccine development. Utilization of this protein

includes the use of full-length SARS-CoV-2 S-proteins, specific

sub-units of S-protein (S1, S2), and specific RBD S-protein SARS-

CoV-2. S-protein plays important role in the entry of viruses, and

several loci of its RBD are targets of the SARS-CoV-2

immunoglobulin antibody (107). This is supported by the results

of research that S-protein is able to trigger specific immunity to

SARS-CoV-2 (108). However, evidence also shows the occurrence

of mutations in some loci in the S-protein which results in a

decrease in the effectiveness of various other vaccines where there is

a decrease in the affinity of the antibodies produced (109, 110).

The S-protein can still be an option in the development of DC-

based vaccines. Given that DC-based vaccines are oriented towards

the formation of T Cell immunity. As outlined, that the SARS-CoV-

2 variant retains most of its epitope, specific research into epitope in

the delta and omicron variants also shows that both variants still

retain T cell epitopes by 75-90% (111). Therefore, the utilization of

the S protein as a loaded-antigen in DC-based vaccines has the

potential to maintain the effectiveness of the vaccine against the

evolving SARS-CoV-2 variant according to the orientation of DC-

based vaccines is the formation of T cells immunity. Determination

of loaded-antigens in DC-based vaccines remains an opportunity

for the foreseeable future. Determination of loaded-antigens in

addition to affecting effectiveness, can also affect the load and cost

of vaccine production.

Conclusion

The development and discovery of effective and enduring

vaccines remain a challenge in conquering the COVID-19

pandemic. Although various types of vaccines have been

distributed, these vaccines still have limitations. The known

professional ability of DC in activating T cells and their

involvement in SARS-CoV-2 infection encourage the

development of DC-based vaccines that have the potential to

have good effectiveness. However, more research is still needed

to get a safe and effective DC-based vaccine so that in the end it

can be a breakthrough to overcome the ongoing pandemic.
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